If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121r^2=62
We move all terms to the left:
121r^2-(62)=0
a = 121; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·121·(-62)
Δ = 30008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30008}=\sqrt{484*62}=\sqrt{484}*\sqrt{62}=22\sqrt{62}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{62}}{2*121}=\frac{0-22\sqrt{62}}{242} =-\frac{22\sqrt{62}}{242} =-\frac{\sqrt{62}}{11} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{62}}{2*121}=\frac{0+22\sqrt{62}}{242} =\frac{22\sqrt{62}}{242} =\frac{\sqrt{62}}{11} $
| 7d-4(d+8=8 | | 2x+6/4+9x+3/6=6 | | 2(2x+4)+2=4x+10 | | 2x(2-x)+1/2(2-x)*2=0 | | 2x(2-x)+1/2(2-x)^2=0 | | 4(5t+7)=52 | | 2(2x+5)+10=4x+20 | | y/9-3=11 | | 3x^2+2x-124=0 | | -2/3x-10=-2(1/3x+5) | | -2/3x-10=-21/3x-10 | | 30=-15+15z | | 7a+6a=6a+24 | | _-40=12x+8 | | 3y=y-8+2 | | 2x-7-2x=1 | | 3x+14=2x-3 | | 4a+1–a=19 | | 11-7=3y-4 | | y=6.2–3(2+5) | | 2x²-1=199 | | 4(x+5)=x+4 | | 19=h÷3-8 | | b+19.8=–9.2 | | 4/5x+5/5=-2/5 | | 4/5y-1=2/5y=4/15 | | x^+4x-9=x+1 | | 0.5x-0.25-0.2x=x-0.9 | | -11.4=u/8+1.4 | | -7.8=-1.4+x/4 | | (100+x)/2=94 | | 2(x/2-4=8 |